cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A204856 G.f.: Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1 - k*x^k).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 9, 11, 22, 27, 49, 68, 115, 157, 279, 372, 628, 914, 1457, 2070, 3457, 4840, 7753, 11442, 17768, 25824, 41315, 59008, 92140, 137212, 208524, 305472, 477659, 691381, 1058019, 1575694, 2370618, 3491693, 5359888, 7796346, 11799263, 17583757
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 9*x^7 + 11*x^8 +...
where A(x) = 1 + x/(1-x) + x^3/((1-x)*(1-2*x^2)) + x^6/((1-x)*(1-2*x^2)*(1-3*x^3)) + x^10/((1-x)*(1-2*x^2)*(1-3*x^3)*(1-4*x^4)) +...
		

Crossrefs

Column sums of A367955.

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^Binomial[n + 1, 2]/Product[(1 - k*x^k), {k, 1, n}], {x, 0, 100}], {x, 0, n}], {n, 0, 50}] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    {a(n)=polcoeff(1+sum(m=1,n,x^(m*(m+1)/2)/prod(k=1,m,1-k*x^k+x*O(x^n))),n)}

Formula

G.f.: 1/(1 - x/(1 - x^2*(1-x)/(1-x^2 - x^3*(1-2*x^2)/(1-2*x^3 - x^4*(1-3*x^3)/(1-3*x^4 - x^5*(1-4*x^4)/(1-4*x^5 -...)))))), a continued fraction.
From Vaclav Kotesovec, Jun 18 2019: (Start)
a(n) ~ c * 3^(n/3), where
c = 23.5612420584121380174441491950859168338330954540437... if mod(n,3)=0
c = 23.5209031427848763179214171003561794127717213180726... if mod(n,3)=1
c = 23.5214569018665529984420312927586688667133017590049... if mod(n,3)=2
(End)

A204857 G.f.: Sum_{n>=0} n!*x^(n*(n+1)/2) / Product_{k=1..n} (1 - (n-k+1)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 27, 61, 151, 375, 1001, 2699, 7635, 22069, 65695, 199671, 620417, 1966715, 6367323, 21059149, 71216311, 246322503, 871268465, 3148964147, 11613253707, 43625643373, 166606282471, 645633978279, 2534590357457, 10066575332603
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 27*x^6 + 61*x^7 +...
where A(x) = 1 + x/(1-x) + 2!*x^3/((1-2*x)*(1-x^2)) + 3!*x^6/((1-3*x)*(1-2*x^2)*(1-x^3)) + 4!*x^10/((1-4*x)*(1-3*x^2)*(1-2*x^3)*(1-x^4)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[n!*x^Binomial[n + 1, 2]/Product[(1 - (n - k + 1)*x^k), {k, 1, n}], {n, 0, 100}], {x, 0, n}], {n, 0, 50}] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    {a(n)=polcoeff(1+sum(m=1,n,m!*x^(m*(m+1)/2)/prod(k=1,m,1-(m-k+1)*x^k+x*O(x^n))),n)}

A291969 Triangle read by rows: T(n,k) = k * (T(n-k,k-1) + T(n-k,k)) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 6, 0, 1, 6, 6, 0, 1, 14, 6, 0, 1, 14, 18, 0, 1, 30, 36, 0, 1, 30, 60, 24, 0, 1, 62, 96, 24, 0, 1, 62, 198, 72, 0, 1, 126, 270, 144, 0, 1, 126, 474, 336, 0, 1, 254, 780, 480, 120, 0, 1, 254, 1188, 1080, 120, 0, 1, 510, 1800
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2017

Keywords

Examples

			First few rows are:
  1;
  0, 1;
  0, 1;
  0, 1,  2;
  0, 1,  2;
  0, 1,  6;
  0, 1,  6,  6;
  0, 1, 14,  6;
  0, 1, 14, 18;
  0, 1, 30, 36;
  0, 1, 30, 60, 24.
		

Crossrefs

Row sums give A204858.
Columns 0-1 give A000007, A000012.
Cf. A291960.

Formula

G.f. of column k: k! * x^(k*(k+1)/2) / Product_{j=1..k} (1-j*x^j).

A306665 Expansion of Sum_{k>=0} k! * x^(k*(k+1)/2) / Product_{j=1..k} (1 - x^j)^j.

Original entry on oeis.org

1, 1, 1, 3, 3, 7, 13, 19, 31, 57, 99, 145, 253, 391, 661, 1071, 1647, 2617, 4189, 6439, 10183, 15999, 24195, 37537, 57553, 87925, 132841, 202899, 306147, 458827, 688501, 1030147, 1533535, 2280549, 3370947, 4986265, 7354573, 10779763, 15804901, 23102271, 33685239
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 04 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[k! x^(k (k + 1)/2)/Product[(1 - x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
Showing 1-4 of 4 results.