cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A367955 Number T(n,k) of partitions of [n] whose block maxima sum to k, triangle T(n,k), n>=0, n<=k<=n*(n+1)/2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 5, 2, 3, 1, 1, 1, 2, 5, 10, 7, 7, 11, 3, 4, 1, 1, 1, 2, 5, 10, 23, 15, 23, 25, 37, 18, 14, 19, 4, 5, 1, 1, 1, 2, 5, 10, 23, 47, 39, 49, 81, 84, 129, 74, 78, 70, 87, 33, 23, 29, 5, 6, 1, 1, 1, 2, 5, 10, 23, 47, 103, 81, 129, 172, 261, 304, 431, 299, 325, 376, 317, 424, 196, 183, 144, 165, 52, 34, 41, 6, 7, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2023

Keywords

Comments

Rows and also columns reversed converge to A365441.
T(n,k) is defined for all n,k >= 0. The triangle contains only the positive terms. T(n,k) = 0 if k < n or k > n*(n+1)/2.

Examples

			T(4,7) = 5: 123|4, 124|3, 13|24, 14|23, 1|2|34.
T(5,9) = 10: 1234|5, 1235|4, 124|35, 125|34, 134|25, 135|24, 14|235, 15|234, 1|23|45, 1|245|3.
T(5,13) = 3: 1|23|4|5, 1|24|3|5, 1|25|3|4.
T(5,14) = 4: 12|3|4|5, 13|2|4|5, 14|2|3|5, 15|2|3|4.
T(5,15) = 1: 1|2|3|4|5.
Triangle T(n,k) begins:
  1;
  .  1;
  .  .  1, 1;
  .  .  .  1, 1, 2, 1;
  .  .  .  .  1, 1, 2, 5, 2,  3,  1;
  .  .  .  .  .  1, 1, 2, 5, 10,  7,  7, 11,  3,  4,  1;
  .  .  .  .  .  .  1, 1, 2,  5, 10, 23, 15, 23, 25, 37, 18, 14, 19, 4, 5, 1;
  ...
		

Crossrefs

Row sums give A000110.
Column sums give A204856.
Antidiagonal sums give A368102.
T(2n,3n) gives A365441.
T(n,2n) gives A368675.
Row maxima give A367969.
Row n has A000124(n-1) terms (for n>=1).
Cf. A000217, A124327 (the same for block minima), A200660, A278677.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          b(n-1, m)*m + expand(x^n*b(n-1, m+1)))
        end:
    T:= (n, k)-> coeff(b(n, 0), x, k):
    seq(seq(T(n, k), k=n..n*(n+1)/2), n=0..10);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 b(k, n, 0):
    seq(seq(T(n, k), k=n..n*(n+1)/2), n=0..10);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]];
    T[0, 0] = 1; T[n_, k_] := b[k, n, 0];
    Table[Table[T[n, k], {k, n, n*(n + 1)/2}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 03 2024, after Alois P. Heinz's second Maple program *)

Formula

Sum_{k=n..n*(n+1)/2} k * T(n,k) = A278677(n-1) for n>=1.
Sum_{k=n..n*(n+1)/2} (k-n) * T(n,k) = A200660(n) for n>=1.
T(n,n) = T(n,n*(n+1)/2) = 1.

A367969 Number of partitions of [n] whose block maxima sum to k, where k is chosen so as to maximize this number.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 37, 129, 431, 1921, 9544, 43844, 223512, 1407320, 8519457, 52422985, 373424140, 2685768084, 20354852852, 160370778238, 1318493838635, 11239312718146, 98700416575613, 916309760098349, 8735277842452542, 84921152781222758, 860903677319960583
Offset: 0

Views

Author

Alois P. Heinz, Dec 06 2023

Keywords

Examples

			a(5) = 11 = A367955(5,12) is the largest value in row 5 of A367955 and counts the partitions of [5] having block maxima sum 12: 123|4|5, 124|3|5, 125|3|4, 13|24|5, 13|25|4, 14|23|5, 15|23|4, 14|25|3, 15|24|3, 1|2|34|5, 1|2|35|4.
		

Crossrefs

Row maxima of A367955.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          b(n-1, m)*m + expand(x^n*b(n-1, m+1)))
        end:
    a:= n-> max(coeffs(b(n, 0))):
    seq(a(n), n=0..30);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 max(seq(b(k, n, 0), k=n..n*(n+1)/2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, 1, b[n-1, m]*m + Expand[x^n*b[n-1, m+1]]];
    a[n_] := Max[CoefficientList[b[n, 0], x]];
    Table[a[n], {n, 0, 30}]
    (* second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]];
    a[n_] := If[n == 0, 1, Max[Table[b[k, n, 0], { k, n, n*(n + 1)/2}]]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 13 2023, after Alois P. Heinz *)

A368204 Number of partitions of [n] whose block minima sum to n.

Original entry on oeis.org

1, 1, 0, 2, 2, 2, 29, 56, 191, 380, 5097, 14288, 74359, 283884, 1106529, 13588409, 53640963, 350573155, 1867738775, 10770352150, 50050737949, 744605446778, 3615378756421, 29368052533243, 195027586980839, 1442227919200245, 8964685271444243, 61478734886319324
Offset: 0

Views

Author

Alois P. Heinz, Dec 16 2023

Keywords

Examples

			a(0) = 1: the empty partition.
a(1) = 1: 1.
a(2) = 0.
a(3) = 2: 13|2, 1|23.
a(4) = 2: 124|3, 12|34.
a(5) = 2: 1235|4, 123|45.
a(6) = 29: 12346|5, 1234|56, 1456|2|3, 145|26|3, 145|2|36, 146|25|3, 14|256|3, 14|25|36, 146|2|35, 14|26|35, 14|2|356, 156|24|3, 15|246|3, 15|24|36, 16|245|3, 1|2456|3, 1|245|36, 16|24|35, 1|246|35, 1|24|356, 156|2|34, 15|26|34, 15|2|346, 16|25|34, 1|256|34, 1|25|346, 16|2|345, 1|26|345, 1|2|3456.
		

Crossrefs

Main diagonal of A124327.

Programs

  • Maple
    b:= proc(n, i, t, m) option remember; `if`(n=0, t^(m-i+1),
         `if`((i+m)*(m+1-i)/2n, 0, `if`(t=0, 0,
          t*b(n, i+1, t, m))+ b(n-i, i+1, t+1, m)))
        end:
    a:= n-> b(n, 1, 0, n):
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, i_, t_, m_] := b[n, i, t, m] = If[n == 0, t^(m - i + 1),
       If[(i + m)*(m + 1 - i)/2 < n || i > n, 0, If[t == 0, 0,
       t*b[n, i + 1, t, m]] + b[n - i, i + 1, t + 1, m]]];
    a[n_] := If[n == 0, 1, b[n, 1, 0, n]];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jun 10 2024, after Alois P. Heinz *)

Formula

a(n) = A124327(n,n).

A368675 Number of partitions of [n] whose block maxima sum to 2n.

Original entry on oeis.org

1, 0, 0, 1, 2, 7, 15, 39, 81, 193, 396, 885, 1816, 3915, 7973, 16860, 34165, 71092, 143804, 295963, 596872, 1219950, 2455139, 4989265, 10028841, 20296288, 40745616, 82225558, 164916967, 332045545, 665566046, 1337794545, 2680049287, 5380396625, 10774301183
Offset: 0

Views

Author

Alois P. Heinz, Jan 02 2024

Keywords

Examples

			a(0) = 1: the empty partition.
a(3) = 1: 1|2|3.
a(4) = 2: 1|23|4, 1|24|3.
a(5) = 7: 12|3|45, 13|2|45, 1|234|5, 1|235|4, 145|2|3, 1|24|35, 1|25|34.
a(6) = 15: 12|34|56, 12|356|4, 134|2|56, 1356|2|4, 1|2345|6, 1|2346|5, 1|235|46, 1|236|45, 14|2|356, 1|245|36, 1|246|35, 156|2|34, 1|25|346, 1|26|345, 1|2|3|456.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          b(n-1, m)*m + expand(x^n*b(n-1, m+1)))
        end:
    a:= n-> coeff(b(n, 0), x, 2*n):
    seq(a(n), n=0..42);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 b(2*n, n, 0):
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]];
    a[n_] := If[n == 0, 1, b[2n, n, 0]];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Oct 03 2024, after Alois P. Heinz *)

Formula

a(n) = A367955(n,2n).
a(n) ~ c * 2^n, where c = 0.636808431228827742738441592748953932083264824206324529619378074873607293... - Vaclav Kotesovec, Jan 13 2024
Showing 1-4 of 4 results.