cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124327 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} such that the sum of the least entries of the blocks is k (1<=k<=n*(n+1)/2).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 4, 2, 1, 3, 2, 1, 0, 1, 1, 0, 8, 4, 2, 10, 6, 7, 2, 5, 3, 2, 1, 0, 1, 1, 0, 16, 8, 4, 29, 19, 21, 14, 23, 14, 18, 10, 7, 7, 5, 3, 2, 1, 0, 1, 1, 0, 32, 16, 8, 85, 56, 64, 42, 101, 62, 75, 69, 47, 54, 38, 38, 24, 23, 10, 13, 7, 5, 3, 2, 1, 0, 1, 1, 0, 64, 32, 16
Offset: 1

Views

Author

Emeric Deutsch, Oct 31 2006

Keywords

Comments

Row n has n(n+1)/2 terms. Row sums yield the Bell numbers (A000110). T(n,1)=1; T(n,2)=0; T(n,3)=2^(n-2). for n>=2; T(n,4)=2^(n-3) for n>=3; T(n,5)=2^(n-4) for n>=4.

Examples

			T(4,7) = 2 because we have 13|2|4 and 1|23|4.
Triangle starts:
  1;
  1, 0,  1;
  1, 0,  2, 1, 0,  1;
  1, 0,  4, 2, 1,  3,  2,  1,  0,  1;
  1, 0,  8, 4, 2, 10,  6,  7,  2,  5,  3,  2,  1, 0, 1;
  1, 0, 16, 8, 4, 29, 19, 21, 14, 23, 14, 18, 10, 7, 7, 5, 3, 2, 1, 0, 1;
  ...
		

Crossrefs

Antidiagonal sums give A365821.
Row maxima give A365903.
T(n,n) gives A368204.

Programs

  • Maple
    Q[1]:=t*s: for n from 2 to 8 do Q[n]:=expand(s*diff(Q[n-1],s)+t^n*s*Q[n-1]) od: for n from 1 to 8 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 8 do seq(coeff(P[n],t,k),k=1..n*(n+1)/2) od; # yields sequence in triangular form
  • Mathematica
    Q[1, t_, s_] := t s;
    Q[n_, t_, s_] := Q[n, t, s] = s D[Q[n-1, t, s], s] + s t^n Q[n-1, t, s] // Expand;
    P[n_, t_] := Q[n, t, s] /. s -> 1;
    T[n_] := Rest@CoefficientList[P[n, t], t];
    Table[T[n], {n, 1, 8}] // Flatten (* Jean-François Alcover, Jun 10 2024 *)

Formula

The generating polynomial of row n is P(n,t)=Q(n,t,1), where Q(n,t,s)=s*dQ(n-1,t,s)/ds + st^n*Q(n-1,t,s); Q(1,t,s)=ts.
Sum_{k=1..n*(n+1)/2} k * T(n,k) = A124325(n+1). - Alois P. Heinz, Dec 05 2023

A365441 Number of partitions of [2n] whose block maxima sum to 3n.

Original entry on oeis.org

1, 1, 2, 5, 10, 23, 47, 103, 209, 449, 908, 1909, 3864, 8011, 16165, 33244, 66933, 136628, 274876, 558107, 1121160, 2268526, 4552291, 9183569, 18417449, 37073504, 74300048, 149334422, 299134695, 600481001, 1202436958, 2411536369, 4827532935, 9675363921, 19364235775
Offset: 0

Views

Author

Alois P. Heinz, Dec 06 2023

Keywords

Comments

Rows of A367955 and the reversed columns of A367955 converge to this sequence.

Examples

			a(0) = 1: the empty partition.
a(1) = 1: 1|2.
a(2) = 2: 12|34, 134|2.
a(3) = 5: 123|456, 12456|3, 13|2456, 1456|23, 1|2|3456.
a(4) = 10: 1234|5678, 1235678|4, 124|35678, 125678|34, 134|25678, 135678|24, 14|235678, 15678|234, 1|23|45678, 1|245678|3.
a(5) = 23: 12345|6789(10), 12346789(10)|5, 1235|46789(10), 1236789(10)|45, 1245|36789(10), 1246789(10)|35, 125|346789(10), 126789(10)|345, 12|3|456789(10), 1345|26789(10), 1346789(10)|25, 135|246789(10), 136789(10)|245, 13|2|456789(10), 145|236789(10), 146789(10)|235, 15|2346789(10), 16789(10)|2345, 1|234|56789(10), 1|2356789(10)|4, 1456789(10)|2|3, 1|24|356789(10), 1|256789(10)|34.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          b(n-1, m)*m + expand(x^n*b(n-1, m+1)))
        end:
    a:= n-> coeff(b(2*n, 0), x, 3*n):
    seq(a(n), n=0..42);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 b(3*n, 2*n, 0):
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]];
    a[n_] := If[n == 0, 1, b[3n, 2n, 0]];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Oct 03 2024, after Alois P. Heinz *)

Formula

a(n) = A367955(2n,3n).

A368246 Number of permutations of [n] whose cycle minima sum to n.

Original entry on oeis.org

1, 1, 0, 2, 3, 8, 90, 384, 2940, 18864, 232848, 1919520, 23364000, 261282240, 3486637440, 48900116160, 746747164800, 11559784320000, 201817271416320, 3580457619916800, 68121866659875840, 1366946563510886400, 28802183294533017600, 627950275273991577600
Offset: 0

Views

Author

Alois P. Heinz, Dec 18 2023

Keywords

Comments

Also the number of permutations of [n] for which the sum of the positions of the left-to-right maxima is n: a(4) = 3: 2143, 3142, 3241; a(5) = 8: 31254, 32154, 41253, 41352, 42153, 42351, 43152, 43251.

Examples

			a(0) = 1: the empty permutation.
a(1) = 1: (1).
a(2) = 0.
a(3) = 2: (13)(2), (1)(23).
a(4) = 3: (124)(3), (142)(3), (12)(34).
a(5) = 8: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4), (123)(45), (132)(45).
		

Crossrefs

Main diagonal of A143946.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          expand(b(n-1)*(x^n+n-1)))
        end:
    a:= n-> coeff(b(n), x, n):
    seq(a(n), n=0..23);

Formula

a(n) = A143946(n,n).
a(n) ~ c * (n-1)!, where c = 0.561459..., conjecture: c = exp(-gamma) = A080130, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 29 2023
Showing 1-3 of 3 results.