A200714 Stolarsky representation interpreted as binary to decimal integers.
0, 1, 3, 2, 7, 5, 6, 15, 4, 11, 13, 14, 31, 10, 9, 23, 12, 27, 29, 30, 63, 8, 21, 19, 22, 47, 26, 25, 55, 28, 59, 61, 62, 127, 20, 17, 43, 18, 39, 45, 46, 95, 24, 53, 51, 54, 111, 58, 57, 119, 60, 123, 125, 126, 255, 16, 41, 35, 42, 87, 37, 38, 79, 44, 91, 93
Offset: 1
Examples
The Stolarsky representation of 19 is 11101. In binary this is equal to 29. So a(19) = 29.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Casey Mongoven, Description of Stolarsky Representations.
Programs
-
Mathematica
stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]]; a[n_] := FromDigits[stol[n], 2]; Array[a, 100] (* Amiram Eldar, Jul 07 2023 *)
-
PARI
a(n) = {if (n == 1, return (0)); tau = (1 + sqrt(5))/2; mn = 0; while ((m = round(mn*tau)) < n, mn++;); if (m == n, return (2*a(mn)+1)); mn = 0; while ((m = floor(mn*(1+tau)-tau/2)) < n, mn++;); if (m == n, return (2*a(mn))); error("neither A nor B !!");} \\ (cf C. Mongoven link) Michel Marcus, May 21 2013, Sep 02 2013
-
PARI
stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));} a(n) = fromdigits(stol(n), 2); \\ Amiram Eldar, Jul 07 2023
Formula
Extensions
More terms from Amiram Eldar, Jul 07 2023
Comments