cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200746 Completely multiplicative function with a(prime(k)) = prime(k)*prime(k-1), a(2) = 2.

Original entry on oeis.org

1, 2, 6, 4, 15, 12, 35, 8, 36, 30, 77, 24, 143, 70, 90, 16, 221, 72, 323, 60, 210, 154, 437, 48, 225, 286, 216, 140, 667, 180, 899, 32, 462, 442, 525, 144, 1147, 646, 858, 120, 1517, 420, 1763, 308, 540, 874, 2021, 96, 1225, 450, 1326, 572, 2491, 432, 1155, 280, 1938
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a200746[n_Integer] := Block[{f, p, a},
      f[x_] := Transpose@FactorInteger[x];
      p[x_] := Which[
        x == 1, 1,
        x == 2, 2,
        True, x NextPrime[x, -1]];
      a[x_] := Times @@ Power[p /@ First[f[x]], Last[f[x]]];
    a /@ Range[n]]; a200746[57] (* Michael De Vlieger, Dec 19 2014 *)
  • PARI
    a(n)=local(fm=factor(n));prod(k=1,matsize(fm)[1],(fm[k,1]*if(fm[k,1]==2,1,precprime(fm[k,1]-1)))^fm[k,2])
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A200746 n) (if (<= n 2) n (* n (A064989 n)))) ;; Antti Karttunen, Dec 18 2014

Formula

a(n) = n * A064989(n).
Sum_{n>=1} 1/a(n) = 2/Product_{k>=1} (1 - 1/(prime(k)*prime(k+1))) = 2.75321091... . - Amiram Eldar, Jan 07 2023