cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200783 G.f.: 1/(1-7*x+35*x^3-35*x^4+7*x^6-x^7).

Original entry on oeis.org

1, 7, 49, 308, 1946, 12152, 75992, 474566, 2964416, 18514405, 115637431, 722234149, 4510869636, 28173535572, 175963587528, 1099016234232, 6864129384252, 42871313869692, 267761500599901, 1672358840069239, 10445056851917149, 65236724277810632, 407449213173792062, 2544806826734163992, 15894107968042546424, 99269879914558590146
Offset: 0

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Number of words of length n over an alphabet of size 7 which do not contain any strictly decreasing factor (consecutive subword) of length 3.
Number of 0..6 arrays x(0..n-1) of n elements without any two consecutive increases.

Examples

			Some solutions for n=5
..6....2....6....3....4....4....6....6....5....3....2....4....5....0....5....5
..4....5....0....4....1....6....4....5....1....1....2....6....6....6....3....6
..4....4....0....4....5....3....5....5....5....1....5....3....3....6....4....2
..3....6....2....5....5....2....2....4....5....5....3....3....2....1....4....5
..4....5....0....3....1....0....4....3....5....5....2....1....0....0....5....3
		

Crossrefs

Column 6 of A200785.
G.f. corresponds to row 7 of A225682.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-7x+35x^3-35x^4+7x^6-x^7),{x,0,30}],x] (* or *) LinearRecurrence[{7,0,-35,35,0,-7,1},{1,7,49,308,1946,12152,75992},30] (* Harvey P. Dale, Jul 23 2014 *)

Formula

a(n) = 7*a(n-1) - 35*a(n-3) + 35*a(n-4) - 7*a(n-6) + a(n-7).

Extensions

Edited by N. J. A. Sloane, May 21 2013