A200792 Number of partitions of n such that the number of parts and the greatest part are not coprime.
0, 0, 1, 1, 3, 3, 7, 8, 12, 14, 24, 29, 43, 53, 72, 87, 119, 145, 196, 241, 314, 386, 505, 617, 786, 960, 1202, 1456, 1813, 2186, 2698, 3253, 3975, 4778, 5827, 6979, 8463, 10127, 12217, 14566, 17509, 20810, 24895, 29513, 35128, 41496, 49220, 57949, 68445
Offset: 1
Keywords
Examples
a(5) = 3: [1,1,1,2], [1,1,3], [1,4]. a(6) = 3: [1,1,2,2], [1,2,3], [2,4]. a(7) = 7: [1,1,1,1,1,2], [1,2,2,2], [2,2,3], [1,3,3], [1,1,1,4], [3,4], [1,6].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
Crossrefs
Cf. A199887.
Programs
-
Maple
b:= proc(n, j, t) option remember; add(b(n-i, i, t+1), i=j..iquo(n, 2))+ `if`(igcd(t, n)>1, 1, 0) end: a:= n-> b(n, 1, 1): seq(a(n), n=1..60);
-
Mathematica
b[n_, j_, t_] := b[n, j, t] = Sum[b[n-i, i, t+1], {i, j, Quotient[n, 2]}] + If[GCD[t, n] > 1, 1, 0]; a[n_] := b[n, 1, 1]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 06 2017, translated from Maple *)