cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200838 T(n,k)=Number of 0..k arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

8, 25, 16, 56, 69, 32, 105, 194, 191, 64, 176, 435, 676, 529, 128, 273, 846, 1817, 2356, 1465, 256, 400, 1491, 4108, 7587, 8210, 4057, 512, 561, 2444, 8239, 19930, 31677, 28610, 11235, 1024, 760, 3789, 15128, 45465, 96690, 132263, 99700, 31113, 2048
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Table starts
....8.....25......56......105.......176........273........400.........561
...16.....69.....194......435.......846.......1491.......2444........3789
...32....191.....676.....1817......4108.......8239......15128.......25953
...64....529....2356.....7587.....19930......45465......93472......177381
..128...1465....8210....31677.....96690.....250913.....577660.....1212729
..256...4057...28610...132263....469116....1384813....3570086.....8291391
..512..11235...99700...552247...2276028....7642875...22063924....56687801
.1024..31113..347434..2305835..11042700...42181611..136360286...387572529
.2048..86161.1210736..9627715..53576350..232803603..842739040..2649819955
.4096.238605.4219166.40199277.259938722.1284861277.5208328180.18116728573

Examples

			Some solutions for n=4 k=3
..1....2....3....0....1....1....2....1....3....3....3....1....2....0....1....1
..0....0....0....2....1....0....3....3....1....3....0....3....2....3....1....0
..0....0....2....2....0....3....0....0....1....2....1....3....2....0....1....1
..3....0....1....3....3....3....3....2....1....2....0....1....2....0....0....1
..3....3....3....0....3....0....1....2....1....1....3....3....3....2....2....3
..1....3....2....0....1....3....3....2....2....1....0....1....2....1....1....0
		

Crossrefs

Column 1 is A000079(n+2)
Column 2 is A098182(n+3)
Row 1 is A131423(n+1)

Formula

Empirical for columns:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2) +a(n-3)
k=3: a(n) = 4*a(n-1) -2*a(n-2) +a(n-3) -a(n-4)
k=4: a(n) = 5*a(n-1) -4*a(n-2) +3*a(n-3) -3*a(n-4) +a(n-5) -a(n-6)
k=5: a(n) = 6*a(n-1) -6*a(n-2) +3*a(n-3) -5*a(n-4) +3*a(n-5) -2*a(n-6) +a(n-7)
k=6: a(n) = 7*a(n-1) -9*a(n-2) +6*a(n-3) -9*a(n-4) +7*a(n-5) -7*a(n-6) +5*a(n-7) -2*a(n-8) +a(n-9)
k=7: a(n) = 8*a(n-1) -12*a(n-2) +6*a(n-3) -10*a(n-4) +12*a(n-5) -11*a(n-6) +11*a(n-7) -6*a(n-8) +3*a(n-9) -a(n-10)
Empirical for rows:
n=1: a(k) = (2/3)*k^3 + 3*k^2 + (10/3)*k + 1
n=2: a(k) = (5/12)*k^4 + (19/6)*k^3 + (79/12)*k^2 + (29/6)*k + 1
n=3: a(k) = (4/15)*k^5 + (17/6)*k^4 + (28/3)*k^3 + (73/6)*k^2 + (32/5)*k + 1
n=4: a(k) = (61/360)*k^6 + (93/40)*k^5 + (779/72)*k^4 + (521/24)*k^3 + (1801/90)*k^2 + (239/30)*k + 1
n=5: a(k) = (34/315)*k^7 + (163/90)*k^6 + (1981/180)*k^5 + (557/18)*k^4 + (7807/180)*k^3 + (1361/45)*k^2 + (333/35)*k + 1
n=6: a(k) = (277/4032)*k^8 + (1375/1008)*k^7 + (4933/480)*k^6 + (2723/72)*k^5 + (14161/192)*k^4 + (11197/144)*k^3 + (216211/5040)*k^2 + (929/84)*k + 1
n=7: a(k) = (124/2835)*k^9 + (1123/1120)*k^8 + (244/27)*k^7 + (1991/48)*k^6 + (57133/540)*k^5 + (74183/480)*k^4 + (291427/2268)*k^3 + (9739/168)*k^2 + (568/45)*k + 1