A200947 Sequence A007924 expressed in decimal.
0, 1, 2, 4, 5, 8, 9, 16, 17, 18, 20, 32, 33, 64, 65, 66, 68, 128, 129, 256, 257, 258, 260, 512, 513, 514, 516, 517, 520, 1024, 1025, 2048, 2049, 2050, 2052, 2053, 2056, 4096, 4097, 4098, 4100, 8192, 8193, 16384, 16385, 16386, 16388, 32768, 32769, 32770
Offset: 0
Keywords
Examples
8=7+1, hence A007924(8)=10001, so a(8)=17.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Wikipedia, "Complete" sequence. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - _N. J. A. Sloane_, May 20 2023]
Programs
-
Maple
a:= proc(n) option remember; local m, p, r; m:=n; r:=0; while m>0 do if m=1 then r:=r+1; break fi; p:= prevprime(m+1); m:= m-p; r:= r+2^numtheory[pi](p) od; r end: seq(a(n), n=0..52); # Alois P. Heinz, Jun 12 2023
-
Mathematica
cprime[n_Integer] := If[n==0, 1, Prime[n]]; gentable[n_Integer] := (m=n; ptable={}; While[m != 0, (i = 0; While[cprime[i] <= m, i++]; j=0; While[j
Formula
a(n) = decimal(A007924(n)).
a(n) mod 2 = A121559(n) for n>=1. - Alois P. Heinz, Jun 12 2023
Extensions
Edited by N. J. A. Sloane, May 20 2023