A200976 Number of partitions of n such that each pair of parts (if any) has a common factor.
1, 0, 1, 1, 2, 1, 4, 1, 5, 3, 8, 1, 14, 1, 16, 9, 22, 1, 38, 1, 45, 17, 57, 1, 94, 7, 102, 30, 138, 1, 218, 2, 231, 58, 298, 21, 451, 3, 491, 103, 644, 4, 919, 4, 1005, 203, 1257, 7, 1784, 20, 1993, 301, 2441, 10, 3365, 70, 3737, 496, 4569, 17, 6252, 23, 6848
Offset: 0
Keywords
Examples
a(0) = 1: []; a(4) = 2: [2,2], [4]; a(9) = 3: [3,3,3], [3,6], [9]; a(31) = 2: [6,10,15], [31]; a(41) = 4: [6,10,10,15], [6,15,20], [6,14,21], [41].
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..350 (terms 0..250 from Alois P. Heinz)
- L. Naughton, G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, J. Int. Seq. 16 (2013) #13.5.8
Crossrefs
Programs
-
Maple
b:= proc(n, j, s) local ok, i; if n=0 then 1 elif j<2 then 0 else ok:= true; for i in s while ok do ok:= evalb(igcd(i, j)<>1) od; `if`(ok, add(b(n-j*k, j-1, [s[], j]), k=1..n/j), 0) +b(n, j-1, s) fi end: a:= n-> b(n, n, []): seq(a(n), n=0..62);
-
Mathematica
b[n_, j_, s_] := Module[{ok, i, is}, Which[n == 0, 1, j < 2, 0, True, ok = True; For[is = 1, is <= Length[s] && ok, is++, i = s[[is]]; ok = GCD[i, j] != 1]; If[ok, Sum[b[n-j*k, j-1, Append[s, j]], {k, 1, n/j}], 0] + b[n, j-1, s]]]; a[n_] := b[n, n, {}]; Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Dec 26 2013, translated from Maple *) Table[Length[Select[IntegerPartitions[n],And[And@@(GCD[##]>1&)@@@Select[Tuples[Union[#],2],LessEqual@@#&]]&]],{n,0,20}] (* Gus Wiseman, Nov 04 2019 *)
Formula
a(n > 0) = A328673(n) - 1. - Gus Wiseman, Nov 04 2019
Comments