cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201009 Numbers m such that the set of distinct prime divisors of m is equal to the set of distinct prime divisors of the arithmetic derivative m'.

Original entry on oeis.org

1, 4, 16, 27, 108, 144, 256, 432, 500, 784, 972, 1323, 1728, 2700, 2916, 3125, 3456, 5292, 8788, 11664, 12500, 13068, 15376, 16875, 19683, 20736, 23328, 25000, 27648, 28125, 31212, 34300, 47916, 54000, 57132, 65536, 72000, 78732, 97556, 102400, 103788, 104544
Offset: 1

Views

Author

Paolo P. Lava, Jan 09 2013

Keywords

Comments

A027748(n,k) = A027748(A003415(n),k) for k=1..A001221(n). - Reinhard Zumkeller, Jan 16 2013
A051674 is a subsequence of this sequence.

Examples

			n = 1728 = 2^6*3^3, n' = 6912 = 2^8*3^3 have the same prime factors 2 and 3.
		

Crossrefs

Programs

  • Haskell
    a201009 = a201009_list
    a201009_list = 1 : filter
       (\x -> a027748_row x == a027748_row (a003415 x)) [2..]
    -- Reinhard Zumkeller, Jan 16 2013
    
  • Maple
    with(numtheory);
    A201009:=proc(q)
    local a,b,k,n;
    for n from 1 to q do
      a:=ifactors(n)[2]; b:=ifactors(n*add(op(2,p)/op(1,p),p=ifactors(n)[2]))[2];
      if nops(a)=nops(b) then
        if product(a[k][1],k=1..nops(a))=product(b[k][1],k=1..nops(a)) then print(n);
    fi; fi; od; end:
    A201009(100000); # Paolo P. Lava, Jan 09 2013
  • Python
    from sympy import primefactors, factorint
    A201009 = [n for n in range(1,10**5) if primefactors(n) == primefactors(sum([int(n*e/p) for p,e in factorint(n).items()]) if n > 1 else 0)] # Chai Wah Wu, Aug 21 2014