A201009 Numbers m such that the set of distinct prime divisors of m is equal to the set of distinct prime divisors of the arithmetic derivative m'.
1, 4, 16, 27, 108, 144, 256, 432, 500, 784, 972, 1323, 1728, 2700, 2916, 3125, 3456, 5292, 8788, 11664, 12500, 13068, 15376, 16875, 19683, 20736, 23328, 25000, 27648, 28125, 31212, 34300, 47916, 54000, 57132, 65536, 72000, 78732, 97556, 102400, 103788, 104544
Offset: 1
Keywords
Examples
n = 1728 = 2^6*3^3, n' = 6912 = 2^8*3^3 have the same prime factors 2 and 3.
Links
- Paolo P. Lava and Donovan Johnson, Table of n, a(n) for n = 1..500 (first 100 terms from Paolo P. Lava)
Programs
-
Haskell
a201009 = a201009_list a201009_list = 1 : filter (\x -> a027748_row x == a027748_row (a003415 x)) [2..] -- Reinhard Zumkeller, Jan 16 2013
-
Maple
with(numtheory); A201009:=proc(q) local a,b,k,n; for n from 1 to q do a:=ifactors(n)[2]; b:=ifactors(n*add(op(2,p)/op(1,p),p=ifactors(n)[2]))[2]; if nops(a)=nops(b) then if product(a[k][1],k=1..nops(a))=product(b[k][1],k=1..nops(a)) then print(n); fi; fi; od; end: A201009(100000); # Paolo P. Lava, Jan 09 2013
-
Python
from sympy import primefactors, factorint A201009 = [n for n in range(1,10**5) if primefactors(n) == primefactors(sum([int(n*e/p) for p,e in factorint(n).items()]) if n > 1 else 0)] # Chai Wah Wu, Aug 21 2014
Comments