A201066 Number of nX2 0..6 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
21, 70, 35, 77, 749, 972, 127, 3034, 7161, 2170, 3258, 24178, 22584, 1925, 44526, 93370, 24434, 32166, 212694, 174093, 12492, 282808, 559380, 136472, 168016, 1042800, 794792, 51945, 1159645, 2215350, 518715, 613149, 3656445, 2665100
Offset: 1
Keywords
Examples
Some solutions for n=10 ..0..3....0..1....0..2....0..0....0..0....0..0....0..1....0..0....0..1....0..1 ..0..3....0..3....0..2....0..1....0..1....1..2....0..1....0..2....0..1....0..1 ..0..4....1..3....1..3....1..2....1..3....1..2....0..3....1..2....0..2....0..2 ..1..4....1..3....1..3....1..2....2..3....1..3....1..4....1..2....1..2....1..2 ..1..4....2..4....1..3....3..3....2..3....2..4....2..4....3..5....2..3....2..4 ..1..5....2..4....2..4....3..5....2..4....3..4....2..4....3..5....3..3....3..4 ..2..5....2..4....4..5....4..5....4..5....3..5....3..5....3..5....4..4....3..5 ..2..5....5..6....4..5....4..5....4..5....4..6....3..5....4..6....5..6....3..5 ..2..6....5..6....5..6....4..6....5..6....5..6....5..6....4..6....5..6....5..6 ..6..6....5..6....6..6....6..6....6..6....5..6....6..6....4..6....5..6....6..6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..126
Formula
Empirical: a(n) = 7*a(n-7) -21*a(n-14) +35*a(n-21) -35*a(n-28) +21*a(n-35) -7*a(n-42) +a(n-49)
Subsequences for n modulo 7 = 1,2,3,4,5,6,0
p=(n+6)/7: a(n) = (5887/60)*p^6 - (799/6)*p^5 + (287/4)*p^4 - (52/3)*p^3 + (49/30)*p^2
q=(n+5)/7: a(n) = (5887/36)*q^6 - (673/6)*q^5 + (151/9)*q^4 + (13/6)*q^3 - (11/36)*q^2
r=(n+4)/7: a(n) = (5887/180)*r^6 + (5/2)*r^5 - (7/36)*r^4 - (1/90)*r^2
s=(n+3)/7: a(n) = (5887/180)*s^6 + (458/15)*s^5 + (365/36)*s^4 + (17/6)*s^3 + (59/90)*s^2 + (2/15)*s
t=(n+2)/7: a(n) = (5887/36)*t^6 + (925/3)*t^5 + (7489/36)*t^4 + (121/2)*t^3 + (143/18)*t^2 + (2/3)*t
u=(n+1)/7: a(n) = (5887/60)*u^6 + (862/3)*u^5 + (4007/12)*u^4 + (1153/6)*u^3 + (817/15)*u^2 + 6*u
v=(n+0)/7: a(n) = (841/180)*v^6 + (101/5)*v^5 + (1325/36)*v^4 + (73/2)*v^3 + (946/45)*v^2 + (34/5)*v + 1
Comments