cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201077 G.f.: 1 / Product_{i>=1} (1-q^(2*i-1))^2*(1-q^(12*i-8))*(1-q^(12*i-6))*(1-q^(12*i-4))*(1-q^(12*i)).

Original entry on oeis.org

1, 2, 3, 6, 10, 16, 26, 40, 60, 90, 131, 188, 269, 378, 525, 726, 993, 1346, 1816, 2430, 3230, 4274, 5619, 7348, 9570, 12400, 15994, 20554, 26303, 33530, 42602, 53934, 68053, 85614, 107370, 134262, 167443, 208250, 258329, 319680
Offset: 0

Views

Author

N. J. A. Sloane, Nov 26 2011

Keywords

Comments

The expansion of the denominator is 1, -2, 1, -2, 3, -2, 3, -2, 3, -4, 4, -6, 4, -6, 7, -8, 9, -8, 11, -10, 12, -12, 13, -16, 16, -20, 21,... - R. J. Mathar, Nov 27 2011
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 26*x^6 + 40*x^7 + 60*x^8 + ...
G.f. = q + 2*q^7 + 3*q^13 + 6*q^19 + 10*q^25 + 16*q^31 + 26*q^37 + 40*q^43 + ...
		

Programs

  • Mathematica
    max = 39; den[i_] := Series[(1-q^(2*i-1))^2*(1-q^(12*i-8))*(1-q^(12*i-6))*(1-q^(12*i-4))*(1-q^(12*i)), {q, 0, max }] // Normal; gf = 1/Product[den[i], {i, 1, max}]; Series[gf, {q, 0, max}] // CoefficientList[#, q]& (* Jean-François Alcover, Mar 18 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / (QPochhammer[ x] QPochhammer[ x^6, x^12]), {x, 0, n}]; (* Michael Somos, Feb 18 2017 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^12 + A) / (eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)), n))} /* Michael Somos, Jun 07 2012 */

Formula

Expansion of chi(x) / (f(-x) * chi(-x^6)) in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Jun 07 2012
Expansion of q^(-1/6) * eta(q^2)^2 * eta(q^12) / (eta(q)^2 * eta(q^4) * eta(q^6)) in powers of q. - Michael Somos, Jun 07 2012
Expansion of f(x^1, x^5) / (f(-x, -x^2) * f(-x^3, -x^6)) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Feb 18 2017
Euler transform of period 12 sequence [2, 0, 2, 1, 2, 1, 2, 1, 2, 0, 2, 1, ...]. - Michael Somos, Feb 18 2017
a(n) ~ exp(2^(3/2)*Pi*sqrt(n)/3) / (3*2^(3/2)*n). - Vaclav Kotesovec, Jun 28 2025