A201080 Irregular triangle read by rows: number of shifted Schroeder paths of length n and area k.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 4, 3, 3, 3, 1, 1, 1, 1, 3, 3, 5, 6, 8, 9, 11, 12, 11, 10, 7, 6, 4, 1, 1, 1, 1, 3, 3, 6, 6, 9, 12, 16, 18, 22, 27, 29, 33, 38, 40, 39, 39, 34, 28, 21, 14, 10, 5, 1, 1, 1, 1, 3, 3, 6, 6, 10, 13, 18, 22, 28, 35, 41, 50, 61
Offset: 0
Examples
Triangle begins 1 1 1 1 1 1 2 1 1 1 1 3 3 4 3 3 3 1 1 1 1 3 3 5 6 8 9 11 12 11 10 7 6 4 1 ...
Links
- Alois P. Heinz, Rows n = 0..40, flattened
- Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953. See Example 3.
Crossrefs
Row sums give A133656.
Programs
-
Maple
b:= proc(x, y) option remember; expand(`if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y)*z^(2*y)+b(x, y-1)+`if`(y>0, add( b(x-(2*j-1), y-1)*z^((2*y-1)*(2*j-1)), j=1..1+(x-y)/2), 0)))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..8); # Alois P. Heinz, Feb 02 2018
-
Mathematica
b[x_, y_] := b[x, y] = Expand[If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y]*z^(2*y) + b[x, y - 1] + If[y > 0, Sum[b[x - (2*j - 1), y - 1]*z^((2*y - 1)*(2*j - 1)), {j, 1, 1 + (x - y)/2}], 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][ b[n, n]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)
Extensions
More term from Alois P. Heinz, Feb 02 2018