cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201146 Triangle read by rows: T(n,k) = (n#)/(k#), 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 6, 3, 1, 1, 30, 15, 5, 5, 1, 30, 15, 5, 5, 1, 1, 210, 105, 35, 35, 7, 7, 1, 210, 105, 35, 35, 7, 7, 1, 1, 210, 105, 35, 35, 7, 7, 1, 1, 1, 210, 105, 35, 35, 7, 7, 1, 1, 1, 1, 2310, 1155, 385, 385, 77, 77, 11, 11, 11, 11, 1, 2310, 1155, 385, 385
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 27 2011

Keywords

Comments

Row sums give A201156.
Central terms give A068111: T(2*n-1,n) = A068111(n).
T(n,1) = A034386(n).
T(n,n-1) = A089026(n) for n > 1.
T(n,n) = A000012(n).
Let n > 1 and p = A000040(n). Then T(p,p-1) = T(p+1,p-1) = p.
T(2*n-1,n-1) = A073838(n) for n > 1.
T(2*n,n+1) = A144186(n).

Examples

			1:                                   1
2:                               2       1
3:                           6       3       1
4:                       6       3       1       1
5:                   30      15      5       5       1
6:               30      15      5       5       1       1
7:           210     105     35      35      7       7       1
8:       210     105     35      35      7       7       1       1
9:   210     105     35      35      7       7       1       1       1
		

Crossrefs

Cf. A034386.

Programs

  • Mathematica
    lst = {}; Do[AppendTo[lst, Product[Prime[i], {i, PrimePi[n]}]/Product[Prime[i], {i, PrimePi[k]}]], {n, 12}, {k, n}]; lst (* Arkadiusz Wesolowski, Dec 02 2011 *)