A201205 Bisection of half-convolution of Catalan sequence A000108; even part.
1, 3, 23, 227, 2529, 30275, 380162, 4939443, 65844845, 895451117, 12374186318, 173257703723, 2452607696798, 35042725663002, 504697422982484, 7319313029400467, 106793147620036005, 1566546633240722681, 23089471526179716182, 341774295456352388245
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 1+2*n, (2*n*(256*n^5-544*n^4+256*n^3+75*n^2-69*n+12)*a(n-1) -(8*(4*n-5))*(4*n-3)*(8*n^2+n-1)*(2*n-3)^2*a(n-2))/ ((2*n+1)*n*(8*n^2-15*n+6)*(n+1)^2)) end: seq(a(n), n=0..20); # Alois P. Heinz, Nov 28 2015
-
Mathematica
Table[(CatalanNumber[2 n + 1] + CatalanNumber[n]^2)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
Formula
a(n) = sum(Catalan(k)*Catalan(2*n-k),k=0..n), n>=0, with Catalan(n)=A000108(n).
Extensions
Cross-reference corrected by Robert Israel, Jun 06 2014
Comments