A201207 Half-convolution of sequence A000032 (Lucas) with itself.
4, 2, 7, 11, 27, 41, 84, 137, 270, 435, 826, 1338, 2488, 4024, 7353, 11899, 21461, 34723, 61960, 100255, 177344, 286947, 503892, 815316, 1422892, 2302286, 3996619, 6466667, 11173935, 18079805, 31114236
Offset: 0
Formula
a(n) = Sum_{k=0..floor(n/2)} L(k)*L(n-k), n >= 0, with the Lucas numbers L(n)=A000032(n).
O.g.f.: (4-2*x-7*x^2+6*x^3-x^4+3*x^5)/((1-3*x^2+x^4)*(1+x^2)*(1-x-x^2)). See a comment above.
a(n) = (1/4)*(2*(2*n+5+(-1)^n)*F(n+1)-(2*n+3+(-1)^n)*F(n)) +(i^n+(-i)^n)/2, n >= 0, with the Fibonacci numbers F(n)=A000045(n) and the imaginary unit i=sqrt(-1). From the partial fraction decomposition of the o.g.f. and the Fibonacci recurrence.
Comments