A203570
Bisection of A201207 (half-convolution of the Lucas sequence A000032 with itself); even part.
Original entry on oeis.org
4, 7, 27, 84, 270, 826, 2488, 7353, 21461, 61960, 177344, 503892, 1422892, 3996619, 11173935, 31114236, 86328978, 238764238, 658478176, 1811322045, 4970928809, 13613135152, 37208048132, 101518052904, 276527670100, 752102592271
Offset: 0
A203574
Bisection of A099924 (Lucas convolution); one half of the terms with odd arguments.
Original entry on oeis.org
2, 11, 41, 137, 435, 1338, 4024, 11899, 34723, 100255, 286947, 815316, 2302286, 6466667, 18079805, 50343893, 139683219, 386328654, 1065440068, 2930780635, 8043131767, 22026515371, 60203886531, 164259660072, 447431169050, 1216927557323
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
-
I:=[2,11,41,137]; [n le 4 select I[n] else 6*Self(n-1) - 11*Self(n-2) + 6*Self(n-3) - Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 22 2017
-
CoefficientList[Series[(2-x-3x^2)/(1-3x+x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[{6,-11,6,-1},{2,11,41,137},30] (* Harvey P. Dale, Oct 12 2015 *)
-
x='x+O('x^30); Vec((2-x-3x^2)/(1-3x+x^2)^2) \\ G. C. Greubel, Dec 22 2017
Showing 1-2 of 2 results.
Comments