A099924 Self-convolution of Lucas numbers.
4, 4, 13, 22, 45, 82, 152, 274, 491, 870, 1531, 2676, 4652, 8048, 13865, 23798, 40713, 69446, 118144, 200510, 339559, 573894, 968183, 1630632, 2742100, 4604572, 7721797, 12933334, 21637221, 36159610, 60367976, 100687786
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 57.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..4767
- É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Sergio Falcon, Half self-convolution of the k-Fibonacci sequence, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106.
- Tamás Szakács, Convolution of second order linear recursive sequences. II. Commun. Math. 25, No. 2, 137-148 (2017). See remark 4.
- Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 37.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
Mathematica
Table[Sum[LucasL[k]LucasL[n-k],{k,0,n}],{n,0,40}] (* or *) LinearRecurrence[ {2,1,-2,-1},{4,4,13,22},40] (* Harvey P. Dale, Mar 06 2012 *)
Formula
a(n) = (n+1)*L(n) + 2F(n+1) = Sum_{k=0..n} L(k)*L(n-k).
G.f.: (2-x)^2/(1-x-x^2)^2, corrected Aug 23 2022
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), a(0)=4, a(1)=4, a(2)=13, a(3)=22. - Harvey P. Dale, Mar 06 2012
Comments