A201271 Number of n X 2 0..2 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
1, 3, 5, 4, 12, 16, 9, 27, 33, 16, 48, 56, 25, 75, 85, 36, 108, 120, 49, 147, 161, 64, 192, 208, 81, 243, 261, 100, 300, 320, 121, 363, 385, 144, 432, 456, 169, 507, 533, 196, 588, 616, 225, 675, 705, 256, 768, 800, 289, 867, 901, 324, 972, 1008, 361, 1083, 1121, 400, 1200
Offset: 0
Examples
Some solutions for n=5: ..0..1....0..1....0..0....0..0....0..0....0..0....0..0....0..1....0..1....0..0 ..0..1....0..1....0..0....0..1....0..1....0..1....0..0....0..2....0..1....0..2 ..0..1....0..1....1..2....1..1....1..1....1..2....1..1....0..2....0..2....1..2 ..0..2....1..2....1..2....2..2....1..2....1..2....1..2....1..2....1..2....1..2 ..2..2....2..2....1..2....2..2....2..2....2..2....2..2....1..2....2..2....1..2
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..210 from R. H. Hardin)
Crossrefs
Column 2 of A201277.
Formula
a(n) = 3*a(n-3) -3*a(n-6) +a(n-9).
Subsequences for n modulo 3 = 1,2,0:
p=(n+2)/3: a(n) = 3*p^2
q=(n+1)/3: a(n) = 3*q^2 + 2*q
r=(n+0)/3: a(n) = r^2 + 2*r + 1.
G.f.: 1+x*(3 + 5*x + 4*x^2 + 3*x^3 + x^4 - 3*x^5 + x^8) / ((1 - x)^3*(1 + x + x^2)^3). - Colin Barker, May 22 2018
Extensions
a(0)=1 prepended by Alois P. Heinz, Mar 18 2024