A201272 Number of n X 3 0..2 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
1, 1, 4, 7, 14, 21, 41, 54, 86, 120, 168, 218, 307, 377, 496, 621, 776, 937, 1177, 1380, 1676, 1984, 2344, 2716, 3221, 3665, 4260, 4875, 5570, 6285, 7201, 8026, 9074, 10152, 11344, 12566, 14071, 15449, 17136, 18865, 20748, 22673, 24977, 27112, 29656, 32256, 35056
Offset: 0
Examples
Some solutions for n=5: ..0..0..0....0..0..0....0..0..1....0..0..0....0..0..1....0..0..2....0..0..1 ..0..0..2....0..0..1....0..0..2....0..0..1....0..0..1....0..0..2....0..1..1 ..1..1..2....1..1..2....0..1..2....1..1..1....0..1..2....0..1..2....0..1..2 ..1..1..2....1..1..2....1..1..2....1..2..2....1..1..2....1..1..2....0..1..2 ..1..2..2....2..2..2....1..2..2....2..2..2....2..2..2....1..1..2....2..2..2
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..210 from R. H. Hardin)
Crossrefs
Column 3 of A201277.
Formula
a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) - 4*a(n-5) + 2*a(n-7) - 2*a(n-9) + 4*a(n-11) + a(n-12) - 2*a(n-13) - 2*a(n-14) + a(n-16).
G.f.: 1 + x*(1 + 4*x + 5*x^2 + 4*x^3 + 7*x^5 + 7*x^6 + 2*x^7 - x^8 + x^9 + 4*x^10 + x^11 - 2*x^12 - 2*x^13 + x^15) / ((1 - x)^5*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)^3). - Colin Barker, Mar 02 2018
Extensions
a(0)=1 prepended by Alois P. Heinz, Mar 18 2024