A201273 Number of n X 4 0..2 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
1, 3, 12, 14, 85, 199, 143, 740, 1274, 759, 3416, 5312, 2746, 11628, 16676, 7946, 32164, 43438, 19713, 76321, 99347, 43137, 162566, 205231, 86351, 318364, 391600, 161089, 581578, 702330, 282904, 1006014, 1195239, 473473, 1662549, 1947164, 761467, 2641053, 3058967
Offset: 0
Examples
Some solutions for n=5 ..0..0..0..1....0..0..0..2....0..0..0..0....0..0..0..1....0..0..1..1 ..0..0..1..1....0..1..1..2....0..0..1..1....0..0..1..2....0..0..1..1 ..0..0..1..2....0..1..1..2....0..1..2..2....0..1..2..2....0..0..2..2 ..1..1..2..2....0..1..2..2....1..1..2..2....0..1..2..2....0..1..2..2 ..2..2..2..2....0..1..2..2....1..1..2..2....1..1..2..2....1..1..2..2
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..192 from R. H. Hardin)
Crossrefs
Column 4 of A201277.
Formula
a(n) = a(n-3) +2*a(n-6) +a(n-9) -4*a(n-12) -5*a(n-15) +4*a(n-18) +5*a(n-21) +a(n-24) -6*a(n-27) +6*a(n-33) -a(n-36) -5*a(n-39) -4*a(n-42) +5*a(n-45) +4*a(n-48) -a(n-51) -2*a(n-54) -a(n-57) +a(n-60).
Extensions
a(0)=1 prepended by Alois P. Heinz, Mar 18 2024