A201322 Decimal expansion of x satisfying 4*x^2 - 1 = cot(x) and 0 < x < Pi.
7, 2, 8, 2, 4, 6, 5, 3, 2, 3, 5, 5, 2, 8, 6, 1, 4, 2, 6, 5, 1, 8, 2, 0, 1, 9, 5, 7, 7, 8, 8, 3, 8, 8, 3, 3, 3, 2, 3, 2, 5, 6, 1, 1, 4, 0, 4, 2, 4, 4, 1, 4, 9, 5, 7, 0, 8, 4, 0, 7, 1, 2, 0, 2, 4, 6, 8, 1, 5, 9, 5, 6, 3, 0, 7, 6, 8, 7, 0, 7, 1, 1, 1, 2, 1, 3, 0, 1, 1, 6, 7, 8, 5, 9, 1, 4, 2, 8, 6
Offset: 0
Examples
0.7282465323552861426518201957788388333...
Crossrefs
Cf. A201280.
Programs
-
Mathematica
a = 4; c = -1; f[x_] := a*x^2 + c; g[x_] := Cot[x] Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110] RealDigits[r] (* A201322 *)
Comments