A201280 Decimal expansion of x satisfying x^2 + 1 = cot(x) and 0 < x < Pi.
6, 2, 3, 8, 9, 9, 5, 6, 0, 5, 8, 0, 9, 0, 3, 4, 4, 3, 6, 3, 9, 9, 0, 3, 2, 9, 3, 9, 4, 6, 3, 2, 4, 4, 2, 6, 4, 4, 2, 7, 6, 1, 7, 2, 0, 3, 1, 5, 6, 6, 7, 3, 6, 5, 2, 8, 8, 4, 4, 3, 7, 9, 0, 4, 7, 1, 8, 2, 8, 0, 2, 1, 3, 1, 8, 5, 4, 3, 4, 2, 6, 6, 8, 5, 9, 8, 1, 6, 4, 7, 7, 3, 1, 9, 4, 3, 1, 2, 4
Offset: 0
Examples
0.62389956058090344363990329394632442...
Crossrefs
Cf. A200614.
Programs
-
Mathematica
(* Program 1: A201280 *) a = 1; c = 1; f[x_] := a*x^2 + c; g[x_] := Cot[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .62, .63}, WorkingPrecision -> 110] RealDigits[r] (* A201280 *) (* Program 2: implicit surface of u*x^2-v=cot(x) *) f[{x_, u_, v_}] := u*x^2 - v - Cot[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .001, Pi}]}, {u, 0, 5, .1}, {v, 0, 5, .1}]; ListPlot3D[Flatten[t, 1]] (* for A201280 *)
Extensions
Edited and a(90) onwards corrected by Georg Fischer, Aug 03 2021
Comments