A201364 Numbers k such that A057775(k) is the factor of a Fermat number 2^(2^m) + 1 for some m.
1, 2, 4, 7, 8, 14, 16, 25, 39, 41, 57, 67, 75, 120, 127, 147, 209, 229, 231, 290, 302, 320, 455, 547, 558, 747, 1553, 1947, 2027, 2458, 3313, 3508, 4262, 4727, 6210, 6393, 6539, 6838, 7312, 8242, 8557, 9431, 9450, 12189, 13252, 14254, 14280, 15164, 17909, 18759
Offset: 1
Keywords
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..57
- Wilfrid Keller, Fermat factoring status
- Eric Weisstein's World of Mathematics, Fermat Number
Programs
-
Mathematica
lst = {}; Do[k = 1; While[! PrimeQ[p = (2*k - 1)*2^n + 1], k++]; If[IntegerQ[Log[2, MultiplicativeOrder[2, p]]], AppendTo[lst, n]], {n, 320}]; lst
-
PARI
isok(n)=my(k=-1, p(k)=k*2^n+1, z(k)=znorder(Mod(2, p(k)))); until(isprime(p(k)), k=k+2); z(k)>>valuation(z(k), 2)==1; \\ Arkadiusz Wesolowski, May 26 2023
Extensions
a(44)-a(50) from Arkadiusz Wesolowski, May 26 2023
Comments