A201415 Decimal expansion of greatest x satisfying 6*x^2 = sec(x) and 0 < x < Pi.
1, 4, 9, 6, 2, 8, 5, 0, 4, 8, 6, 0, 7, 6, 5, 2, 9, 5, 3, 4, 7, 9, 2, 2, 9, 0, 4, 1, 7, 1, 2, 4, 2, 4, 4, 6, 9, 7, 5, 1, 2, 6, 6, 2, 6, 7, 9, 8, 7, 7, 1, 8, 2, 6, 4, 4, 9, 4, 1, 4, 8, 6, 8, 8, 7, 0, 5, 6, 1, 9, 9, 3, 2, 4, 9, 0, 6, 9, 7, 4, 6, 1, 6, 1, 7, 7, 7, 6, 8, 9, 8, 5, 8, 6, 6, 4, 9, 0, 8
Offset: 1
Examples
least: 0.42800895010041097002739347769069180659... greatest: 1.496285048607652953479229041712424469...
Crossrefs
Cf. A201397.
Programs
-
Mathematica
a = 6; c = 0; f[x_] := a*x^2 + c; g[x_] := Sec[x] Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] RealDigits[r] (* A201414 *) r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A201415 *)
-
PARI
solve(x=1,2, 6*x^2*cos(x)-1) \\ Charles R Greathouse IV, Nov 26 2024
Comments