A201423 Decimal expansion of greatest x satisfying 10*x^2 = sec(x) and 0 < x < Pi.
1, 5, 2, 7, 9, 4, 9, 8, 9, 4, 6, 9, 8, 6, 1, 4, 4, 1, 9, 6, 4, 9, 2, 4, 4, 7, 5, 2, 4, 6, 8, 0, 1, 9, 8, 4, 7, 4, 3, 0, 5, 4, 9, 8, 4, 6, 9, 8, 8, 5, 8, 3, 4, 6, 0, 2, 2, 7, 6, 4, 3, 7, 4, 6, 8, 8, 0, 0, 1, 0, 6, 3, 7, 2, 5, 6, 8, 1, 3, 5, 5, 6, 2, 2, 9, 3, 9, 5, 4, 0, 8, 6, 8, 8, 8, 6, 0, 4, 2, 5
Offset: 1
Examples
least: 0.3248357625526726343272168905918357... greatest: 1.52794989469861441964924475246801...
Crossrefs
Cf. A201397.
Programs
-
Mathematica
a = 10; c = 0; f[x_] := a*x^2 + c; g[x_] := Sec[x] Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110] RealDigits[r] (* A201422 *) r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] RealDigits[r] (* A201423 *)
Comments