cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048634 a(n) = a(n-1)*a(n-3) + a(n-2), with a(0)=a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 2, 3, 5, 13, 44, 233, 3073, 135445, 31561758, 96989417779, 13136731722638413, 414618347540933702027833, 40213592128486236142855326045681320, 528275171395527518169753769210241662354568290572993
Offset: 0

Views

Author

N. J. A. Sloane, David(AT)interface.co.uk

Keywords

Programs

  • Maple
    A048634 := proc(n) option remember; if n<=1 then 0 elif n=2 then 1 else A048634(n-1)*A048634(n-3)+A048634(n-2); fi; end;
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]*a[n-3] + a[n-2], a[0] == 0, a[1] == 0, a[2] == 1}, a, {n, 0, 20}] (* Vaclav Kotesovec, Aug 16 2021 *)

Formula

a(n) ~ c^(A092526^n), where c = A344388 = 1.0574735961... (very close to A201506). - Vaclav Kotesovec, Aug 16 2021

Extensions

Name clarified by Michel Marcus, Aug 16 2021

A344388 Decimal expansion of a constant related to the asymptotics of A048634.

Original entry on oeis.org

1, 0, 5, 7, 4, 7, 3, 5, 9, 6, 1, 0, 2, 9, 3, 0, 7, 1, 4, 5, 8, 8, 3, 6, 1, 3, 6, 9, 0, 1, 1, 1, 7, 2, 1, 2, 3, 2, 5, 9, 5, 6, 8, 3, 4, 0, 4, 0, 1, 4, 9, 4, 6, 9, 5, 1, 9, 6, 0, 0, 8, 8, 9, 3, 4, 0, 8, 4, 1, 4, 1, 8, 9, 2, 9, 2, 5, 7, 3, 5, 3, 8, 4, 8, 5, 1, 2, 6, 6, 6, 7, 6, 0, 5, 3, 3, 5, 1, 0, 5, 5, 3, 4, 0, 1, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 16 2021

Keywords

Comments

This constant is a very close to A201506.
Conjecture: It is equal to the limit of column "h^2" in the Table 1 in reference by Wright and Trefethen, p. 336.

Examples

			1.05747359610293071458836136901117212325956834040149469519600889340841418929257...
		

Crossrefs

Programs

  • Mathematica
    A092526 = 1/3 + 2/(3*(116 + 12*Sqrt[93])^(1/3)) + (1/6)*(116 + 12*Sqrt[93])^(1/3); terms = 500; b = ConstantArray[0, terms]; b[[7]] = N[Log[2], 1000]; b[[8]] = N[Log[3], 1000]; b[[9]] = N[Log[5], 1000]; Quiet[Do[b[[n]] = b[[n-1]] + b[[n-3]] - Sum[Exp[k*(b[[n-2]] - b[[n-1]] - b[[n-3]])]/k*(-1)^k, {k, 1, 1000}], {n, 10, terms}]; Exp[Table[N[b[[n]]/A092526^n, 110], {n, Length[b] - 20, Length[b]}]]]

Formula

Equals exp(limit_{n->infinity} log(A048634(n)) / A092526^n ).
Showing 1-2 of 2 results.