cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201554 Number of arrays of 7 integers in -n..n with sum zero.

Original entry on oeis.org

1, 393, 8135, 60691, 273127, 908755, 2473325, 5832765, 12354469, 24072133, 43874139, 75715487, 124853275, 198105727, 304134769, 453752153, 660249129, 939749665, 1311587215, 1798705035, 2428080047, 3231170251, 4244385685, 5509582933
Offset: 0

Views

Author

R. H. Hardin, Dec 02 2011

Keywords

Comments

Row 7 of A201552.

Examples

			Some solutions for n=3:
..1....3....2....2....3...-2....0...-1...-2....1....0....1...-2...-3....1...-1
..3....2...-3....0...-2...-2....1...-3....1...-2....2....2....3....1....2...-1
.-3...-3....3....2...-2....1...-1....3...-3....3....1....1....0....0...-1....3
.-3...-2....2...-3....0....1....2....2...-1....1...-2...-3...-1....3....0....3
..0....0...-1....3...-1....1....2....1....1....1....1....2...-2...-1....0....2
.-1....0...-1...-1....2....3...-1...-1....1...-1...-2...-1....2....2...-2...-3
..3....0...-2...-3....0...-2...-3...-1....3...-3....0...-2....0...-2....0...-3
		

Crossrefs

Cf. A201552.

Programs

  • Mathematica
    a[n_] := Coefficient[Expand[Sum[x^k, {k, 0, 2n}]^7, x], x, 7n]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    {a(n) = polcoeff((sum(k=0, 2*n, x^k))^7, 7*n, x)} \\ Seiichi Manyama, Dec 14 2018

Formula

Empirical: a(n) = 1+ 7*n*(n+1)*(841*n^4+1682*n^3+1568*n^2+727*n+222)/180.
Conjectures from Colin Barker, May 23 2018: (Start)
G.f.: (393 + 5384*x + 11999*x^2 + 5370*x^3 + 407*x^4 - 6*x^5 + x^6) / (1 - x)^7. -
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
a(n) = [x^(7*n)] (Sum_{k=0..2*n} x^k)^7. - Seiichi Manyama, Dec 14 2018
Barker conjectures confirmed using technique similar to A201553.

Extensions

a(0)=1 prepended by Seiichi Manyama, Dec 14 2018