A201565 Decimal expansion of greatest x satisfying x^2 + 2 = csc(x) and 0 < x < Pi.
3, 0, 5, 3, 1, 5, 1, 7, 2, 2, 5, 2, 4, 8, 7, 0, 2, 1, 1, 8, 0, 4, 1, 5, 5, 0, 5, 3, 1, 7, 8, 1, 1, 3, 7, 4, 5, 9, 6, 2, 2, 4, 7, 6, 7, 8, 3, 9, 2, 0, 5, 5, 3, 4, 7, 5, 4, 1, 5, 4, 4, 1, 3, 9, 0, 6, 3, 7, 7, 3, 7, 1, 6, 9, 0, 6, 9, 5, 2, 2, 2, 7, 9, 1, 6, 9, 7, 4, 3, 4, 0, 3, 5, 9, 3, 5, 7, 5, 5
Offset: 1
Examples
least: 0.46758094406347136736141927076686538859402537... greatest: 3.05315172252487021180415505317811374596224...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
(* Program 1: A201564, A201565 *) a = 1; c = 2; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .46, .47}, WorkingPrecision -> 110] RealDigits[r] (* A201564 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] RealDigits[r] (* A201565 *) (* Program 2: implicit surface of u*x^2+v=csc(x) *) f[{x_, u_, v_}] := u*x^2 + v - Csc[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .1, 1}]}, {v, 0, 1}, {u, 2 + v, 10}]; ListPlot3D[Flatten[t, 1]] (* for A201564 *)
-
PARI
a=1; c=2; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
Comments