A201571 Decimal expansion of greatest x satisfying x^2 + 5 = csc(x) and 0 < x < Pi.
3, 0, 7, 2, 2, 7, 9, 8, 3, 0, 0, 5, 1, 2, 5, 0, 3, 3, 5, 8, 5, 9, 8, 6, 6, 4, 6, 0, 4, 6, 4, 6, 9, 9, 0, 6, 0, 3, 6, 3, 7, 2, 9, 1, 3, 7, 8, 0, 4, 8, 4, 8, 3, 4, 3, 3, 0, 6, 3, 1, 4, 0, 6, 9, 7, 8, 4, 5, 2, 0, 7, 7, 8, 5, 0, 3, 1, 7, 1, 7, 0, 5, 5, 2, 3, 2, 0, 3, 8, 1, 8, 3, 5, 8, 4, 0, 9, 6, 1
Offset: 1
Examples
least: 0.19974229281947213708674051595534811453... greatest: 3.07227983005125033585986646046469906...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 1; c = 5; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110] RealDigits[r] (* A201570 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] RealDigits[r] (* A201571 *)
-
PARI
a=1; c=5; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
Comments