A201586 Decimal expansion of greatest x satisfying 3*x^2 = csc(x) and 0 < x < Pi.
3, 1, 0, 7, 0, 5, 7, 0, 8, 4, 6, 6, 9, 2, 7, 9, 1, 3, 9, 4, 2, 1, 3, 3, 6, 3, 9, 7, 5, 8, 9, 0, 2, 3, 2, 6, 5, 5, 1, 8, 6, 0, 5, 8, 8, 9, 3, 2, 2, 5, 2, 6, 6, 1, 3, 6, 2, 2, 4, 2, 2, 4, 1, 7, 2, 2, 9, 4, 1, 3, 6, 5, 7, 1, 6, 6, 3, 2, 5, 1, 8, 1, 3, 0, 2, 2, 1, 8, 8, 2, 7, 7, 7, 5, 6, 4, 8, 2, 6
Offset: 1
Examples
least: 0.71361154106545351696712348748482823114400555... greatest: 3.10705708466927913942133639758902326551860...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 3; c = 0; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110] RealDigits[r] (* A201585 *) r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] RealDigits[r] (* A201586 *)
-
PARI
a=3; c=0; solve(x=3.1, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018
Comments