A201587 Decimal expansion of least x satisfying 4*x^2 = csc(x) and 0 < x < Pi.
6, 4, 4, 8, 9, 7, 4, 7, 5, 5, 4, 3, 6, 7, 3, 8, 3, 4, 4, 4, 3, 3, 5, 7, 3, 9, 0, 0, 4, 4, 4, 7, 4, 5, 2, 0, 1, 7, 0, 1, 3, 6, 8, 0, 5, 7, 9, 8, 7, 6, 3, 3, 7, 5, 0, 8, 8, 3, 4, 1, 4, 4, 8, 8, 6, 5, 5, 0, 7, 5, 9, 7, 3, 0, 8, 2, 2, 8, 5, 9, 1, 9, 6, 9, 6, 3, 7, 0, 0, 3, 0, 4, 9, 4, 5, 1, 7, 5, 1
Offset: 0
Examples
least: 0.6448974755436738344433573900444745201701368... greatest: 3.1158390512762535211310850151952082587811...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 4; c = 0; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110] RealDigits[r] (* A201587 *) r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] RealDigits[r] (* A201588 *)
-
PARI
a=4; c=0; solve(x=0.6, 0.7, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018
Comments