A201616 Decimal expansion of Sum_{n = 1 .. infinity} (-1)^(n+1)/F(n)^n where F=A000045 is the Fibonacci sequence.
1, 1, 2, 9, 7, 0, 5, 2, 2, 2, 0, 0, 5, 9, 7, 7, 4, 2, 2, 3, 8, 0, 4, 0, 6, 7, 7, 9, 0, 4, 2, 8, 7, 9, 4, 3, 4, 0, 8, 6, 1, 9, 1, 4, 5, 0, 2, 3, 1, 6, 4, 4, 8, 6, 2, 1, 1, 2, 1, 0, 5, 0, 7, 6, 7, 7, 7, 0, 1, 9, 5, 3, 8, 3, 2, 7, 3, 0, 7, 9, 8, 9, 2, 9, 2, 6, 3, 4, 6, 4, 8, 2, 2, 8, 9, 4, 3, 8, 9, 6, 9, 3, 7, 8, 8
Offset: 0
Examples
0.1129705222005977422380406779... = 1/1^1 - 1/1^2 + 1/2^3 - 1/3^4 + 1/5^5 - ...
Programs
-
Maple
with(combinat,fibonacci):Digits:=120:s:=sum( evalf(((-1)^(n+1))/ fibonacci(n)^n),n=1..200):print(s):
-
Mathematica
RealDigits[N[Sum[((-1)^(n+1))/Fibonacci[n]^n,{n,1,105}],105]][[1]]
-
PARI
-suminf(n=1,(-1)^n/fibonacci(n)^n) \\ Charles R Greathouse IV, Dec 05 2011