cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201632 If the sum of the squares of 4 consecutive numbers is a triangular number t(u), then a(n) is its index u.

Original entry on oeis.org

35, 83, 1203, 2835, 40883, 96323, 1388835, 3272163, 47179523, 111157235, 1602714963, 3776073843, 54445129235, 128275353443, 1849531679043, 4357585943235, 62829631958243, 148029646716563, 2134357954901235, 5028650402419923
Offset: 1

Views

Author

Paul Weisenhorn, Jan 09 2013

Keywords

Comments

Sum_{(e(n)+j)^2,j=0..3} = a(n)*(a(n)+1)/2=t(a(n)) give the Pell equation c(n)^2 - 32*d(n)^2 = 41 with 2*a(n) + 1 = c(n) and e(n) + 1.5 = d(n). e(n) = A201633(n).
In general, for the sum of the squares of k consecutive numbers, one get an analog sequence with k in {4, 5, 6, 7, 11, 15, 17, 19, 23,...}. It gives the Pell equation c(n)^2 - 8k*d(n)^2 = 4*binomial((k+1),3) + 1 with 2*a(n) + 1 = c(n) and e(n) + (k-1)/2 = d(n).

Examples

			For n=2: a(2)=83; t(83)=83*84/2=3486.
A201633(2)=e(2)=28; 28^2+29^2+30^2+31^2=3486.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,34,-34,-1,1},{35,83,1203,2835,40883},30] (* Harvey P. Dale, Dec 10 2024 *)

Formula

G.f.: (35*x+48*x^2-70*x^3+3*x^5)/((1-x)*(1-34*x^2+x^4)).
a(n+4) = 34*a(n+2) - a(n) + 16.
a(n+5) = a(n+4) + 34*a(n+3) - 34*a(n+2) - a(n+1) + a(n).
eigenvalues ej: {1,(3+2r),-(3+2r),(3-2r),-(3-2r)}.
a(n+1) = (k1*e1 + k2*e2^n + k3*e3^n + k4*e4^n + k5*e5^n)/4 for k1=-2; k2=50+35r; k3=21+15r; k4=50-35r; k5=21-15r, where r = sqrt(2).

Extensions

Corrected by R. J. Mathar, Jun 14 2016

A252747 Numbers n such that the hexagonal number H(n) is equal to the sum of four consecutive squares.

Original entry on oeis.org

18, 42, 602, 1418, 20442, 48162, 694418, 1636082, 23589762, 55578618, 801357482, 1888036922, 27222564618, 64137676722, 924765839522, 2178792971618, 31414815979122, 74014823358282, 1067178977450618, 2514325201209962, 36252670417341882, 85413042017780418
Offset: 1

Views

Author

Colin Barker, Dec 21 2014

Keywords

Comments

Also positive integers y in the solutions to 8*x^2-4*y^2+24*x+2*y+28 = 0, the corresponding values of x being A201633.

Examples

			18 is in the sequence because H(18) = 630 = 121+144+169+196 = 11^2+12^2+13^2+14^2.
		

Crossrefs

Programs

  • PARI
    Vec(-2*x*(x^4-26*x^2+12*x+9)/((x-1)*(x^2-6*x+1)*(x^2+6*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+34*a(n-2)-34*a(n-3)-a(n-4)+a(n-5).
G.f.: -2*x*(x^4-26*x^2+12*x+9) / ((x-1)*(x^2-6*x+1)*(x^2+6*x+1)).
Showing 1-2 of 2 results.