A201632 If the sum of the squares of 4 consecutive numbers is a triangular number t(u), then a(n) is its index u.
35, 83, 1203, 2835, 40883, 96323, 1388835, 3272163, 47179523, 111157235, 1602714963, 3776073843, 54445129235, 128275353443, 1849531679043, 4357585943235, 62829631958243, 148029646716563, 2134357954901235, 5028650402419923
Offset: 1
Examples
For n=2: a(2)=83; t(83)=83*84/2=3486. A201633(2)=e(2)=28; 28^2+29^2+30^2+31^2=3486.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,34,-34,-1,1},{35,83,1203,2835,40883},30] (* Harvey P. Dale, Dec 10 2024 *)
Formula
G.f.: (35*x+48*x^2-70*x^3+3*x^5)/((1-x)*(1-34*x^2+x^4)).
a(n+4) = 34*a(n+2) - a(n) + 16.
a(n+5) = a(n+4) + 34*a(n+3) - 34*a(n+2) - a(n+1) + a(n).
eigenvalues ej: {1,(3+2r),-(3+2r),(3-2r),-(3-2r)}.
a(n+1) = (k1*e1 + k2*e2^n + k3*e3^n + k4*e4^n + k5*e5^n)/4 for k1=-2; k2=50+35r; k3=21+15r; k4=50-35r; k5=21-15r, where r = sqrt(2).
Extensions
Corrected by R. J. Mathar, Jun 14 2016
Comments