cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201637 Triangle of second-order Eulerian numbers T(n,k) (n>=0, 0 <= k <= n) read by rows.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 22, 58, 24, 0, 1, 52, 328, 444, 120, 0, 1, 114, 1452, 4400, 3708, 720, 0, 1, 240, 5610, 32120, 58140, 33984, 5040, 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880, 0
Offset: 0

Views

Author

Peter Luschny, Nov 11 2012

Keywords

Comments

This version indexes the Eulerian numbers in the same way as Graham et al.'s Concrete Mathematics. This indexing is also used by Maple. The indexing as used by Riordan, Comtet and others, is given in A008517, which is the main entry for the second-order Eulerian numbers.

Examples

			... [0]  [1]    [2]     [3]     [4]     [5]     [6]    [7]  [8]
[0] [1]
[1] [1,   0]
[2] [1,   2,     0]
[3] [1,   8,     6,      0]
[4] [1,  22,    58,     24,      0]
[5] [1,  52,   328,    444,    120,      0]
[6] [1, 114,  1452,   4400,   3708,    720,      0]
[7] [1, 240,  5610,  32120,  58140,  33984,   5040,     0]
[8] [1, 494, 19950, 195800, 644020, 785304, 341136, 40320,  0]
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 256.

Crossrefs

Columns 2 and 3 respectively give A004301 and A006260.
T(2n,n) gives A290306.

Programs

  • Maple
    A201637 := (n,k) -> combinat[eulerian2](n,k):
    for n from 0 to 9 do seq(A201637(n,k),k=0..n) od;
    # Illustrating the connection with the Lambert W function:
    alias(W = LambertW): len := 9:
    w := W(-exp((x - 1)^2 * t - x)*x) + 1:
    ser := series((1 - 1/x)*(1 - 1/w), t, len + 1):
    egf := simplify(subs(W(-exp(-x)*x)=(-x), ser)):
    poly := n -> n!*coeff(egf, t, n):
    seq(seq(coeff(poly(n), x, k), k = 0..n), n = 0..len);  # Peter Luschny, Mar 15 2025
  • Mathematica
    t[0, 0] = 1; t[n_, m_] = Sum[(-1)^(n+k)*Binomial[2*n+1, k]*StirlingS1[2*n-m-k, n-m-k], {k, 0, n-m-1}]; Table[t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten
    (* Jean-François Alcover, Jun 28 2013 *)
    E2[n_, k_] /; k == 0 = 1; E2[n_, k_] /; k < 0 || k > n = 0;
    E2[n_, k_] := E2[n, k] = (2*n - 1 - k)*E2[n-1, k-1] + (k + 1)*E2[n-1, k];
    Table[E2[n, k], {n, 0, 8}, {k, 0, n}] // TableForm
    (* Peter Luschny, Aug 14 2022 *)
  • PARI
    for(n=0,10, for(m=0,n, print1(if(m==0 || n==0,1,sum(k=0,n-m-1, (-1)^(n+k)* binomial(2*n+1, k)*stirling(2*n-m-k, n-m-k,1))), ", "))) \\ G. C. Greubel, Oct 24 2017
  • Sage
    @CachedFunction
    def eulerian2(n, k):
        if k==0: return 1
        if k==n: return 0
        return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1)
    for n in (0..9): [eulerian2(n, k) for k in(0..n)]
    

Formula

T(n, k) = [x^k](n! * [t^n](1 - 1/x)*(1 - 1/w)), where w = W(-exp((x - 1)^2 * t - x)*x) + 1, and W(-exp(-x)*x) is substituted after expansion by (-x). (W is the Lambert W function.) - Peter Luschny, Mar 15 2025

Extensions

Terms a(52) onward added by G. C. Greubel, Oct 24 2017