A201655 Decimal expansion of greatest x satisfying 7*x^2 = csc(x) and 0 < x < Pi.
3, 1, 2, 6, 9, 8, 2, 1, 0, 1, 7, 1, 4, 1, 9, 1, 0, 1, 6, 0, 1, 3, 9, 3, 9, 9, 9, 2, 7, 3, 0, 1, 6, 3, 7, 1, 7, 9, 8, 9, 7, 9, 7, 5, 8, 0, 5, 9, 7, 5, 5, 5, 6, 2, 5, 6, 1, 1, 3, 4, 3, 6, 3, 8, 0, 1, 0, 7, 5, 2, 7, 1, 7, 5, 3, 0, 4, 3, 9, 4, 9, 2, 1, 5, 2, 4, 6, 1, 1, 6, 8, 1, 9, 2, 6, 7, 8, 6, 7
Offset: 1
Examples
least: 0.53109378322877556954245426287272878812709738... greatest: 3.12698210171419101601393999273016371798979...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 7; c = 0; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r] (* A201654 *) r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] RealDigits[r] (* A201655 *)
-
PARI
a=7; c=0; solve(x=3.1, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018
Comments