A201658 Decimal expansion of least x satisfying 9*x^2 = csc(x) and 0 < x < Pi.
4, 8, 7, 1, 8, 2, 5, 7, 2, 5, 4, 6, 1, 3, 4, 3, 6, 0, 7, 6, 7, 5, 4, 2, 4, 3, 0, 0, 4, 3, 0, 6, 4, 2, 2, 0, 7, 8, 2, 6, 9, 9, 4, 2, 5, 6, 4, 3, 6, 3, 7, 9, 2, 2, 0, 6, 4, 9, 1, 8, 6, 8, 7, 1, 6, 1, 6, 4, 4, 1, 1, 2, 2, 6, 7, 3, 6, 5, 8, 8, 1, 0, 1, 3, 7, 2, 0, 6, 4, 3, 8, 3, 1, 6, 1, 2, 2, 4, 9, 5
Offset: 0
Examples
least: 0.4871825725461343607675424300430642207826... greatest: 3.1302527861735360350037012277754031636...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 9; c = 0; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] RealDigits[r] (* A201658 *) r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] RealDigits[r] (* A201659 *)
-
PARI
a=9; c=0; solve(x=.4, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018
Extensions
Terms a(89) onward corrected by G. C. Greubel, Sep 11 2018
Comments