A201661
Decimal expansion of least x satisfying x^2 - 1 = csc(x) and 0
1, 4, 1, 8, 3, 5, 5, 6, 1, 8, 5, 4, 4, 9, 4, 2, 6, 5, 6, 3, 3, 5, 3, 0, 6, 2, 3, 6, 8, 7, 2, 0, 8, 1, 9, 1, 9, 3, 3, 6, 0, 8, 6, 0, 7, 1, 9, 4, 4, 2, 3, 1, 8, 8, 8, 4, 1, 9, 9, 5, 2, 7, 3, 9, 8, 4, 1, 1, 0, 9, 3, 7, 8, 2, 6, 9, 7, 4, 6, 2, 0, 7, 9, 6, 9, 2, 0, 3, 5, 0, 8, 7, 4, 1, 3, 1, 5, 5, 1
Offset: 1
Examples
least: 1.4183556185449426563353062368720819193360860... greatest: 3.0179424745361512278525720832771672528942...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 1; c = -1; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A201661 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110] RealDigits[r] (* A201663 *)
-
PARI
a=1; c=-1; solve(x=1, 2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018
Comments