A201662
Decimal expansion of greatest x satisfying 10*x^2 = csc(x) and 0
3, 1, 3, 1, 3, 9, 4, 2, 5, 3, 9, 2, 0, 6, 8, 9, 9, 3, 5, 4, 4, 4, 0, 2, 8, 6, 2, 2, 2, 3, 8, 7, 4, 7, 0, 2, 5, 1, 2, 2, 6, 9, 2, 6, 3, 5, 3, 4, 1, 8, 2, 7, 3, 1, 3, 6, 8, 5, 9, 4, 6, 4, 8, 3, 8, 3, 0, 4, 0, 3, 1, 1, 3, 7, 1, 5, 0, 1, 9, 1, 2, 0
Offset: 1
Examples
least: 0.469931606000588922868653535061891306388300... greatest: 3.131394253920689935444028622238747025122...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 10; c = 0; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] RealDigits[r] (* A201660 *) r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] RealDigits[r] (* A201662 *)
-
PARI
a=10; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018
Comments