A201665
Decimal expansion of greatest x satisfying 2*x^2 - 1 = csc(x) and 0
3, 0, 8, 6, 1, 5, 8, 7, 7, 4, 3, 7, 7, 1, 2, 7, 1, 8, 1, 2, 2, 5, 9, 4, 8, 2, 8, 6, 3, 5, 8, 2, 1, 4, 5, 2, 4, 9, 8, 5, 3, 3, 6, 2, 2, 2, 6, 5, 7, 2, 2, 3, 1, 2, 0, 5, 5, 0, 0, 3, 9, 9, 0, 9, 2, 5, 4, 4, 4, 8, 6, 8, 6, 5, 9, 4, 8, 8, 2, 3, 8, 2, 7, 4, 4, 0, 4, 8, 0, 4, 6, 9, 4, 9, 0, 8, 0, 2, 7
Offset: 1
Examples
least: 1.039245650797247793231929327242483730000... greatest: 3.086158774377127181225948286358214524...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 2; c = -1; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110] RealDigits[r] (* A201664 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110] RealDigits[r] (* A201665 *)
-
PARI
a=2; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018
Comments