A201681 Decimal expansion of greatest x satisfying 10*x^2 - 1 = csc(x) and 0 < x < Pi.
3, 1, 3, 1, 2, 8, 8, 4, 6, 9, 6, 9, 3, 5, 6, 2, 4, 9, 3, 8, 0, 4, 5, 8, 5, 0, 5, 2, 0, 4, 7, 5, 3, 5, 8, 7, 7, 4, 0, 4, 4, 0, 0, 2, 4, 9, 2, 7, 1, 8, 5, 5, 6, 9, 0, 5, 3, 8, 6, 1, 2, 3, 0, 1, 6, 4, 4, 7, 2, 9, 1, 9, 2, 1, 8, 1, 3, 4, 8, 1, 9, 0, 2, 4, 9, 1, 8, 9, 9, 5, 3
Offset: 1
Examples
least: 0.54206448268216048375504315216947653357... greatest: 3.13128846969356249380458505204753587...
Links
Crossrefs
Cf. A201564.
Programs
-
Mathematica
a = 10; c = -1; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r] (* A201680 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110] RealDigits[r] (* A201681 *)
-
PARI
a=10; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 12 2018
Comments