cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201692 Number of permutations that avoid the consecutive pattern 1423.

Original entry on oeis.org

1, 1, 2, 6, 23, 110, 631, 4218, 32221, 276896, 2643883, 27768955, 318174363, 3949415431, 52794067318, 756137263377, 11551672922816, 187507250145806, 3222662529113641, 58464560588277289, 1116469710152742025, 22386721651323946628, 470259350616967829363
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2011

Keywords

Crossrefs

Programs

  • Maple
    c := proc(n,l)
        if n = 1 then
            if l = 0 then
                1;
            else
                0;
            end if;
        elif n= 2 or n = 3 then
            0;
        else
            a := 0 ;
            for k from 1 to (n-2)/2 do
                a := a+procname(n-2*k-1,l-k)*binomial(n-k-2,k) ;
            end do:
            a ;
        end if;
    end proc:
    A201693 := proc(nmax)
        g := 1-t ;
        for n from 2 to nmax do
            for l from 0 to n/2 do
                g := g-c(n,l)*t^n*(-1)^l/n! ;
            end do:
        end do:
        taylor(1/g,t=0,nmax) ;
    end proc:
    nmax := 25 ;
    egf := A201693(nmax) ;
    for n from 0 to nmax-1 do
        printf("%d,",coeftayl(egf,t=0,n)*n!) ;
    end do: # R. J. Mathar, Dec 04 2011
    # second Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, `if`(0 b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 07 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, If[0Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)

Formula

The reference gives an e.g.f. There is an associated triangle of numbers c_{n,l} that should be added to the OEIS if it is not already present.
a(n) ~ c * d^n * n!, where d = 0.95482605094987833345080179991528996596888600981..., c = 1.1567436851576902067739566662625378535625602... . - Vaclav Kotesovec, Sep 11 2014

Extensions

Definition corrected by N. J. A. Sloane, Mar 15 2015