cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201720 The total number of components in (A011800) of all labeled forests on n nodes whose components are all paths.

Original entry on oeis.org

0, 1, 3, 12, 64, 420, 3246, 28798, 288072, 3205044, 39234340, 523821936, 7572221328, 117792884872, 1961516974704, 34807390821960, 655594811020096, 13060711726818768, 274358217793164912, 6060159633360214144, 140404595387426964480
Offset: 0

Views

Author

Geoffrey Critzer, Dec 04 2011

Keywords

Crossrefs

Cf. A011800.

Programs

  • Maple
    A201720 := proc(n)
        g := (2*x-x^2)*exp((2*x-x^2)/(2-2*x))/(2-2*x) ;
        coeftayl(g,x=0,n) ;
        %*n! ;
    end proc:
    seq(A201720(n),n=0..30) ; # R. J. Mathar, Jun 27 2022
  • Mathematica
    D[Range[0, 20]! CoefficientList[ Series[Exp[y (2 x - x^2)/(2 - 2 x)], {x, 0, 20}], x], y] /. y -> 1

Formula

E.g.f.: x*(2-x)*exp[x*(2-x)/(2-2x)]/(2-2x). - R. J. Mathar, Jun 27 2022
D-finite with recurrence 6*(n+1)*a(n) +2*(-6*n^2-19*n+35)*a(n-1) +2*(3*n^3+26*n^2-102*n+75)*a(n-2) -(n-2)*(29*n^2-102*n+85)*a(n-3) +(13*n-15)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jun 27 2022