cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201338 E.g.f.: log((2 - exp(x))/(3 - 2*exp(x))).

Original entry on oeis.org

1, 4, 24, 196, 2040, 25924, 390264, 6804676, 135033720, 3007364164, 74315818104, 2018441506756, 59776933889400, 1917312391176004, 66216538949389944, 2449977966210378436, 96685769287005577080, 4053944607498740773444, 179973441341757042161784, 8433644996370680262923716
Offset: 1

Views

Author

Paul D. Hanna, Dec 03 2011

Keywords

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 24*x^3/3! + 196*x^4/4! + 2040*x^5/5! +...
Note that A(x) = G(G(x)) where G(x) is an e.g.f. of A000629:
G(x) = x + 2*x^2/2! + 6*x^3/3! + 26*x^4/4! + 150*x^5/5! + 1082*x^6/6! +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[Log[(2-E^x)/(3-2*E^x)], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, May 23 2013 *)
  • PARI
    {a(n)=n!*polcoeff(log((2-exp(x+x*O(x^n)))/(3-2*exp(x+x*O(x^n)))),n)}

Formula

E.g.f.: G(G(x)) where G(x) = log(1/(2-exp(x))) is an e.g.f. of A000629 (with offset 1), where A000629(n) is the number of necklaces of partitions of n+1 labeled beads.
E.g.f.: log(1+x) o x/(1-2*x) o exp(x)-1, a composition of functions.
a(n) ~ (n-1)! * (1/log(3/2))^n. - Vaclav Kotesovec, May 23 2013

A201732 a(n) = [x^n/n!] (1/x) * log( (n+1 - n*exp(x)) / (n+2 - (n+1)*exp(x)) ).

Original entry on oeis.org

1, 2, 18, 386, 15150, 946082, 86148762, 10776331778, 1773210244230, 371367615732002, 96462262816769586, 30433572793375652738, 11463680237091180885150, 5081782052880868302982562, 2618864991559576227420716490, 1552537179057766207300655437826
Offset: 0

Views

Author

Paul D. Hanna, Dec 04 2011

Keywords

Comments

The function log((n+1 - n*exp(x))/(n+2 - (n+1)*exp(x))) equals the (n+1)-th iteration of log(1/(2-exp(x))), the e.g.f. of A000629 (with offset 1), where A000629(n) is the number of necklaces of partitions of n+1 labeled beads.

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff((1/x)*log((n+1 - n*exp(x+O(x^(n+2))))/(n+2 - (n+1)*exp(x+O(x^(n+2))))),n)}

Formula

a(n) = A201731(n+1) / (n+1).
Showing 1-2 of 2 results.