A201733 Number of isomorphism classes of polycyclic groups (or solvable groups) of order n.
1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 12, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1
Offset: 1
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..500
- Wikipedia, Polycyclic group
- Wikipedia, Solvable group
Programs
-
GAP
a:=[];; N:=120;; for n in [1..N] do a[n]:=0;; for j in [1..NrSmallGroups(n)] do if IsPcGroup(SmallGroup(n,j)) = true then a[n]:=a[n]+1; fi; od; Print(a[n],","); od;
Formula
a(n) = A000001(n) for n < 60.
a(n) <= A000001(n) with equality if and only if n is not in A056866. In particular a(n) = A000001(n) for odd n (this is the Feit-Thompson theorem). - Benoit Jubin, Mar 30 2012
Comments