A201746 Decimal expansion of the number x satisfying x^2+7=e^x.
2, 6, 3, 4, 9, 8, 9, 9, 1, 5, 7, 5, 9, 3, 4, 7, 9, 1, 8, 3, 9, 4, 7, 4, 7, 7, 4, 3, 7, 3, 8, 5, 9, 6, 5, 4, 3, 7, 3, 6, 2, 5, 4, 5, 6, 0, 2, 7, 0, 1, 4, 0, 7, 8, 9, 1, 4, 4, 9, 4, 6, 0, 8, 3, 4, 5, 9, 3, 3, 4, 7, 6, 4, 5, 6, 3, 8, 5, 6, 6, 9, 2, 3, 6, 4, 4, 5, 1, 8, 3, 4, 9, 0, 4, 9, 1, 3, 2, 2
Offset: 1
Examples
x=2.634989915759347918394747743738596543736254...
Crossrefs
Cf. A201741.
Programs
-
Mathematica
a = 1; b = 0; c = 7; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 2.6, 2.7}, WorkingPrecision -> 110] RealDigits[r] (* A201746 *) RealDigits[x/.FindRoot[x^2+7==E^x,{x,2.6},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Jun 11 2025 *)
Comments