A201751 Decimal expansion of the least x satisfying -x^2+2=e^x.
1, 3, 1, 5, 9, 7, 3, 7, 7, 7, 7, 9, 6, 2, 9, 0, 1, 8, 7, 8, 8, 7, 1, 7, 7, 3, 8, 7, 3, 0, 1, 2, 7, 1, 0, 4, 8, 0, 1, 8, 9, 3, 7, 8, 5, 6, 0, 5, 1, 1, 5, 2, 5, 1, 3, 8, 4, 8, 7, 8, 1, 5, 9, 7, 3, 3, 6, 8, 8, 0, 0, 4, 3, 3, 5, 4, 6, 2, 5, 1, 1, 2, 1, 4, 4, 0, 1, 5, 4, 4, 0, 8, 3, 8, 5, 5, 4, 1, 6
Offset: 1
Examples
least: -1.3159737777962901878871773873012710... greatest: 0.53727444917385660425676298977967...
Crossrefs
Cf. A201741.
Programs
-
Mathematica
a = -1; b = 0; c = 2; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -2, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110] RealDigits[r] (* A201751 *) r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r] (* A201752 *)
Comments