A201767 Decimal expansion of the least x satisfying 10 - x^2 = e^x.
3, 1, 5, 5, 5, 3, 2, 3, 3, 0, 7, 9, 6, 3, 4, 6, 4, 4, 6, 9, 3, 2, 3, 0, 3, 3, 1, 9, 2, 6, 5, 8, 4, 0, 7, 0, 0, 0, 1, 0, 4, 2, 5, 6, 4, 4, 8, 9, 1, 1, 1, 9, 8, 6, 3, 7, 4, 6, 9, 1, 3, 5, 4, 3, 7, 9, 8, 7, 6, 6, 6, 9, 4, 4, 2, 6, 5, 5, 6, 4, 0, 3, 8, 8, 5, 0, 7, 3, 6, 1, 5, 0, 4, 4, 1, 0, 2, 2, 6
Offset: 1
Examples
least: -3.1555323307963464469323033192658407000... greatest: 1.87144644984680656529114045650417237...
Crossrefs
Cf. A201741.
Programs
-
Mathematica
a = -1; b = 0; c = 10; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -4, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -3.2, -3.1}, WorkingPrecision -> 110] RealDigits[r] (* A201767 *) r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110] RealDigits[r] (* A201768 *)
Extensions
a(93) onwards corrected by Georg Fischer, Aug 03 2021
Comments