A201812 Number of arrays of 4 integers in -n..n with sum zero and equal numbers of elements greater than zero and less than zero.
19, 61, 151, 313, 571, 949, 1471, 2161, 3043, 4141, 5479, 7081, 8971, 11173, 13711, 16609, 19891, 23581, 27703, 32281, 37339, 42901, 48991, 55633, 62851, 70669, 79111, 88201, 97963, 108421, 119599, 131521, 144211, 157693, 171991, 187129, 203131
Offset: 1
Keywords
Examples
Some solutions for n=21: -6 15 -3 -8 -13 1 13 16 15 -15 3 -21 -6 8 -11 1 9 -12 8 9 9 21 -2 -18 13 9 -7 12 3 20 -18 18 4 -18 16 -17 -13 -14 -13 9 -20 21 -16 19 -11 -7 21 -15 -7 15 -21 16 17 -8 2 -7 -8 -15 20 -10 14 -21 8 -4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A201811.
Formula
Empirical: a(n) = 4*n^3 + 14*n + 1.
Conjectures from Colin Barker, May 25 2018: (Start)
G.f.: x*(19 - 15*x + 21*x^2 - x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
Comments